Analytical and Computational Modeling for Multi-Degree of Freedom Systems: Estimating the Likelihood of an FOWT Structural Failure

Author:

Gaidai Oleg1ORCID,Xu Jingxiang1,Yakimov Vladimir2,Wang Fang1ORCID

Affiliation:

1. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201308, China

2. Central Marine Research and Design Institute, Saint Petersburg 191015, Russia

Abstract

Wind turbines and their associated parts are subjected to cyclical loads, such as bending, torque, longitudinal stresses, and twisting moments. The novel spatiotemporal reliability technique described in this research is especially useful for high-dimensional structural systems that are either measured or numerically simulated during representative observational time span. As this study demonstrates, it is possible to predict risks of dynamic system failure or damage given the in situ environmental load pattern. As an engineering example for this reliability, the authors have chosen 10-MW floating wind turbines and their dynamic responses, under environmental loadings, caused by wind and waves. The aim of this study was to benchmark a state-of-the-art approach suitable for the reliable study of offshore wind turbines. Existing reliability methods do not easily cope with dynamic system high dimensionality. The advocated reliability technique enables accurate and efficient assessment of dynamic system failure probability, accounting for system nonlinearities and high dimensionality as well as cross-correlations between different system components.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3