Features of Pinch Plasma, Electron, and Ion Beams That Originated in the AECS PF-1 Plasma Focus Device

Author:

Akel MohamadORCID,AL-Hawat Sharif,Ahmad Muthanna,Ballul Yamen,Shaaban Soliman

Abstract

The measured current traces of alow energy AECS PF-1 plasma focus device are used for studying of the formed plasma, and the produced ion and electron beams. Anadapted version of the Lee model (RADPFV5.15FIB&REB) is applied, taking into account the fitting procedures between the measured and computed current waveforms for each shot. The experiments on AECSPF-1 were performed with three different gases—helium, nitrogen, and argon—for studying the effect of the atomic number on the properties of the generated beams. For numerical experiments using the Lee model, 36 successful shots for each gas were selected. The peak values of the total discharge current Ipeak were 50–55 kA, the pinch currents Ipinchwere34–36 kA, and the final pinch radius reached a minimum value of 0.03 cm for argon. The ion mean energy ranged from 35 keV (for He) to 223 keV (for Ar). The beam energy also had an extreme value of 1.34 J (0.05%E0) for argon. The results presented the highest values of 2.4 × 1014Wm−2 for the power flow density, and adamage factor of around 3.1 × 1010 Wm−2s0.5 for argon. For electron beams, the results also showed that the fluence and flux increased with the higher atomic number and reached a peak of 9.7 × 1022 m−2 and 5.9 × 1030 m−2 s−1 for argon, respectively. The results presented the highest values of 2.2 × 1016Wm−2 for the power flow density (heat flux), and adamage factor of around 3 × 1012 Wm−2s0.5 for argon. The kinetic energy of the relativistic electrons was found to be within the range of 18–23 keV. The results show that the ion and electron beam properties (energy, flux, fluence, ion and electron numbers, current, power flow density, and damage factor) emitted from the plasma focus had wide ranges based on the operational plasma focus parameters. Thus, these results could be used for selection of the suitable plasma focus parameters for desired material processing applications.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3