Unpaired Remote Sensing Image Dehazing Using Enhanced Skip Attention-Based Generative Adversarial Networks with Rotation Invariance

Author:

Zheng Yitong1,Su Jia1,Zhang Shun1ORCID,Tao Mingliang1ORCID,Wang Ling1

Affiliation:

1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Remote sensing image dehazing aims to enhance the visibility of hazy images and improve the quality of remote sensing imagery, which is essential for various applications such as object detection and classification. However, the lack of paired data in remote sensing image dehazing enhances the applications of unpaired image-to-image translation methods. Nonetheless, the considerable parameter size of such methods often leads to prolonged training times and substantial resource consumption. In this work, we propose SPRGAN, a novel approach leveraging Enhanced Perlin Noise-Based Generative Adversarial Networks (GANs) with Rotation Invariance to address these challenges. Firstly, we introduce a Spatial-Spectrum Attention (SSA) mechanism with Skip-Attention (SKIPAT) to enhance the model’s ability to interpret and process spectral information in hazy images. Additionally, we have significantly reduced computational overhead to streamline processing. Secondly, our approach combines Perlin Noise Masks in pre-training to simulate real foggy conditions, thereby accelerating convergence and enhancing performance. Then, we introduce a Rotation Loss (RT Loss) to ensure the model’s ability to dehaze images from different angles uniformly, thus enhancing its robustness and adaptability to diverse scenarios. At last, experimental results demonstrate the effectiveness of SPRGAN in remote sensing image dehazing, achieving better performance compared to state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3