The Influence of Low-Temperature Disintegration on the Co-Fermentation Process of Distillation Residue and Waste-Activated Sludge

Author:

Remiszewska-Skwarek Anna,Wierzchnicki Ryszard,Roubinek Otton K.,Kasinath Archana,Jeżewska Alicja,Jasinska Magdalena,Byliński HubertORCID,Chmielewski Andrzej G.ORCID,Czerwionka KrzysztofORCID

Abstract

Innovative low-temperature disintegration (process temperature 55 °C and oxygen concentration 0.2 mg/dm3) can be an economically rational technology to intensifying energy production from renewable sources. The proposed process can achieve a degree of disintegration—under optimal conditions—of about 50%, which is excellent when compared with other methods of feed pre-treatment. The low-temperature disintegration of distillation residue and waste-activated sludge before the co-fermentation process increased biogas production by 30% and methane production by 65% (over a 26 d duration). The obtained results confirm that the low-temperature disintegration method can be effectively used to pre-prepare this type of feed. At the same time, it was discovered that the Gompertz model can be used to mathematically describe the biogas accumulation curves in the methane co-fermentation processes of the tested feeds (the correlation coefficients were higher than 0.98).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank. A Clean Planet for All a European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy,2018

2. Energetyka jądrowa, dlaczego nie Polska?;Chmielewski;Instal,2019

3. Eurostat—Sewage Sludge Production and Disposalhttp://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en&dataset=env_ww_spd

4. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions European Climate Pact,2020

5. Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3