Reliability Updating of Offshore Structures Subjected to Marine Growth

Author:

Schoefs FranckORCID,Tran Thanh-Binh

Abstract

Marine growth is a known problem for oceanic infrastructure and has been shown to negatively impact the reliability of bottom-fixed or floating offshore structures submitted to fatigue or extreme loading. Among other effects, it has been shown to change drag forces by increasing member diameters and modifying the roughness. Bio-colonization being highly random, the objective of this paper is to show how one-site inspection data increases reliability by decreasing uncertainties. This can be introduced in a reliability-based inspection framework for optimizing inspection and maintenance (here, cleaning). The modeling and computation are illustrated through the reliability analysis of a monopile in the European Atlantic area subjected to marine growth and according to the plastic collapse limit state. Based on surveys of structures in the North Sea, long-term stochastic modeling (space and time) of the marine growth thickness is first suggested. A Dynamic Bayesian Network is then developed for reliability updating from the inspection data. Finally, several realistic (10–20 measurements) inspection strategies are compared in terms of reliability improvement and the accuracy of reliability assessment.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3