Abstract
In Distributed Hash Table (DHT)-based Mobile Ad Hoc Networks (MANETs), a logical structured network (i.e., follows a tree, ring, chord, 3D, etc., structure) is built over the ad hoc physical topology in a distributed manner. The logical structures guide routing processes and eliminate flooding at the control and the data plans, thus making the system scalable. However, limited radio range, mobility, and lack of infrastructure introduce frequent and unpredictable changes to network topology, i.e., connectivity/dis-connectivity, node/link failure, network partition, and frequent merging. Moreover, every single change in the physical topology has an associated impact on the logical structured network and results in unevenly distributed and disrupted logical structures. This completely halts communication in the logical network, even physically connected nodes would not remain reachable due to disrupted logical structure, and unavailability of index information maintained at anchor nodes (ANs) in DHT networks. Therefore, distributed solutions are needed to tolerate faults in the logical network and provide end-to-end connectivity in such an adversarial environment. This paper defines the scope of the problem in the context of DHT networks and contributes a Fault-Tolerant DHT-based routing protocol (FTDN). FTDN, using a cross-layer design approach, investigates network dynamics in the physical network and adaptively makes arrangements to tolerate faults in the logically structured DHT network. In particular, FTDN ensures network availability (i.e., maintains connected and evenly distributed logical structures and ensures access to index information) in the face of failures and significantly improves performance. Analysis and simulation results show the effectiveness of the proposed solutions.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献