Xiroi II, an Evolved ASV Platform for Marine Multirobot Operations

Author:

Martorell-Torres AntoniORCID,Guerrero-Font EricORCID,Guerrero-Sastre JoséORCID,Oliver-Codina GabrielORCID

Abstract

In this paper, we present the design, development and a practical use of an Autonomous Surface Vehicle (ASV) as a modular and flexible platform for a large variety of marine tasks including the coordination strategies with other marine robots. This work tackles the integration of an open-source Robot-Operating-System (ROS)-based control architecture that provides the ASV with a wide variety of navigation behaviors. These new ASV capabilities can be used to acquire useful data from the environment to survey, map, and characterize marine habitats. In addition, the ASV is used as a radio frequency relay point between an Autonomous Underwater Vehicle (AUV) and the ground station as well as to enhance the Acoustic Communication Link (ACL) with the AUV. In order to improve the quality of the ACL, a new Marine Multirobot System (MMRS) coordination strategy has been developed that aims to keep both vehicles close to each other. The entire system has been successfully designed, implemented, and tested in real marine environment robotic tasks. The experimental tests show satisfactory results both in ROS-based navigation architecture and the MMRS coordination strategy resulting in a significant improvement of the quality of the ACL.

Funder

ERDF A way of making Europe

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference57 articles.

1. A survey and analysis of multi-robot coordination;Yan;Int. J. Adv. Robot. Syst.,2013

2. Xiroi ASV: A Modular Autonomous Surface Vehicle to Link Communications;IFAC-PapersOnLine,2018

3. A Survey of Underwater Multi-Robot Systems;Zhou;IEEE/CAA J. Autom. Sin.,2022

4. Underwater acoustic communications;Stojanovic;Electro Int. Conf. Proc.,1995

5. Sparus II AUV—A Hovering Vehicle for Seabed Inspection;Carreras;IEEE J. Ocean. Eng.,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3