Combining Classifiers for Deep Learning Mask Face Recognition

Author:

Cheng Wen-Chang1,Hsiao Hung-Chou2,Huang Yung-Fa3ORCID,Li Li-Hua2

Affiliation:

1. Department of Computer Science & Information Engineering, Chaoyang University of Technology, Taichung City 413310, Taiwan

2. Department of Information Management, Chaoyang University of Technology, Taichung City 413310, Taiwan

3. Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung City 413310, Taiwan

Abstract

This research proposes a single network model architecture for mask face recognition using the FaceNet training method. Three pre-trained convolutional neural networks of different sizes are combined, namely InceptionResNetV2, InceptionV3, and MobileNetV2. The models are augmented by connecting an otherwise fully connected network with a SoftMax output layer. We combine triplet loss and categorical cross-entropy loss to optimize the training process. In addition, the learning rate of the optimizer is dynamically updated using the cosine annealing mechanism, which improves the convergence of the model during training. Mask face recognition (MFR) experimental results on a custom MASK600 dataset show that proposed InceptionResNetV2 and InceptionV3 use only 20 training epochs, and MobileNetV2 uses only 50 training epochs, but to achieve more than 93% accuracy than the previous works of MFR with annealing. In addition to reaching a practical level, it saves time for training models and effectively reduces energy costs.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3