Responses of the Mushroom Pleurotus ostreatus under Different CO2 Concentration by Comparative Proteomic Analyses

Author:

Lin RongmeiORCID,Zhang Lujun,Yang Xiuqing,Li Qiaozhen,Zhang Chenxiao,Guo Lizhong,Yu Hao,Yu Hailong

Abstract

Background: Pleurotus ostreatus is a popular edible mushroom in East Asian markets. Research on the responses of P. ostreatus under different carbon dioxide concentrations is limited. Methods: Label-free LC-MS/MS quantitative proteomics analysis technique was adopted to obtain the protein expression profiles of P. ostreatus fruiting body pileus collected under different carbon dioxide concentrations. The Pearson correlation coefficient analysis and principal component analysis were performed to reveal the correlation among samples. The differentially expressed proteins (DEPs) were organized. Gene ontology analysis was performed to divide the DEPs into different metabolic processes and pathways. Results: The expansion of stipes was inhibited in the high CO2 group compared with that in the low CO2 group. There were 415 DEPs (131 up- and 284 down-regulated) in P. ostreatus PH11 treated with 1% CO2 concentration compared with P. ostreatus under atmospheric conditions. Proteins related to hydrolase activity, including several amidohydrolases and cell wall synthesis proteins, were highly expressed under high CO2 concentration. Most of the kinases and elongation factors were significantly down-regulated under high CO2 concentration. The results suggest that the metabolic regulation and development processes were inhibited under high CO2 concentrations. In addition, the sexual differentiation process protein Isp4 was inhibited under high CO2 concentrations, indicating that the sexual reproductive process was also inhibited under high CO2 concentrations, which is inconsistent with the small fruiting body pileus under high CO2 concentrations. Conclusions: This research reports the proteome analysis of commercially relevant edible fungi P. ostreatus under different carbon dioxide concentrations. This study deepens our understanding of the mechanism for CO2-induced morphological change in the P. ostreatus fruiting body, which will facilitate the artificial cultivation of edible mushrooms.

Funder

China Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3