Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis

Author:

Čunátová Kristýna,Reguera David PajueloORCID,Vrbacký Marek,Fernández-Vizarra ErikaORCID,Ding Shujing,Fearnley Ian M.,Zeviani MassimoORCID,Houštěk JosefORCID,Mráček TomášORCID,Pecina PetrORCID

Abstract

The oxidative phosphorylation (OXPHOS) system localized in the inner mitochondrial membrane secures production of the majority of ATP in mammalian organisms. Individual OXPHOS complexes form supramolecular assemblies termed supercomplexes. The complexes are linked not only by their function but also by interdependency of individual complex biogenesis or maintenance. For instance, cytochrome c oxidase (cIV) or cytochrome bc1 complex (cIII) deficiencies affect the level of fully assembled NADH dehydrogenase (cI) in monomeric as well as supercomplex forms. It was hypothesized that cI is affected at the level of enzyme assembly as well as at the level of cI stability and maintenance. However, the true nature of interdependency between cI and cIV is not fully understood yet. We used a HEK293 cellular model where the COX4 subunit was completely knocked out, serving as an ideal system to study interdependency of cI and cIV, as early phases of cIV assembly process were disrupted. Total absence of cIV was accompanied by profound deficiency of cI, documented by decrease in the levels of cI subunits and significantly reduced amount of assembled cI. Supercomplexes assembled from cI, cIII, and cIV were missing in COX4I1 knock-out (KO) due to loss of cIV and decrease in cI amount. Pulse-chase metabolic labeling of mitochondrial DNA (mtDNA)-encoded proteins uncovered a decrease in the translation of cIV and cI subunits. Moreover, partial impairment of mitochondrial protein synthesis correlated with decreased content of mitochondrial ribosomal proteins. In addition, complexome profiling revealed accumulation of cI assembly intermediates, indicating that cI biogenesis, rather than stability, was affected. We propose that attenuation of mitochondrial protein synthesis caused by cIV deficiency represents one of the mechanisms, which may impair biogenesis of cI.

Funder

Grantová Agentura České Republiky

Grantová Agentura, Univerzita Karlova

Agentura Pro Zdravotnický Výzkum České Republiky

Akademie Věd České Republiky

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3