Elevated Free Phosphatidylcholine Levels in Cerebrospinal Fluid Distinguish Bacterial from Viral CNS Infections

Author:

Al-Mekhlafi Amani,Sühs Kurt-WolframORCID,Schuchardt Sven,Kuhn Maike,Müller-Vahl Kirsten,Trebst Corinna,Skripuletz ThomasORCID,Klawonn FrankORCID,Stangel MartinORCID,Pessler FrankORCID

Abstract

The identification of CSF biomarkers for bacterial meningitis can potentially improve diagnosis and understanding of pathogenesis, and the differentiation from viral CNS infections is of particular clinical importance. Considering that substantial changes in CSF metabolites in CNS infections have recently been demonstrated, we compared concentrations of 188 metabolites in CSF samples from patients with bacterial meningitis (n = 32), viral meningitis/encephalitis (n = 34), and noninflamed controls (n = 66). Metabolite reprogramming in bacterial meningitis was greatest among phosphatidylcholines, and concentrations of all 54 phosphatidylcholines were significantly (p = 1.2 × 10−25–1.5 × 10−4) higher than in controls. Indeed, all biomarkers for bacterial meningitis vs. viral meningitis/encephalitis with an AUC ≥ 0.86 (ROC curve analysis) were phosphatidylcholines. Four of the five most accurate (AUC ≥ 0.9) phosphatidylcholine biomarkers had higher sensitivity and negative predictive values than CSF lactate or cell count. Concentrations of the 10 most accurate phosphatidylcholine biomarkers were lower in meningitis due to opportunistic pathogens than in meningitis due to typical meningitis pathogens, and they correlated most strongly with parameters reflecting blood–CSF barrier dysfunction and CSF lactate (r = 0.73–0.82), less so with CSF cell count, and not with blood CRP. In contrast to the elevated phosphatidylcholine concentrations in CSF, serum concentrations remained relatively unchanged. Taken together, these results suggest that increased free CSF phosphatidylcholines are sensitive biomarkers for bacterial meningitis and do not merely reflect inflammation but are associated with local disease and a shift in CNS metabolism.

Funder

Helmholtz-Gemeinschaft

Medizinischen Hochschule Hannover

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3