Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors

Author:

Ranieri Caetano MazzoniORCID,MacLeod ScottORCID,Dragone MauroORCID,Vargas Patricia AmancioORCID,Romero  Roseli Aparecida FrancelinORCID

Abstract

Worldwide demographic projections point to a progressively older population. This fact has fostered research on Ambient Assisted Living, which includes developments on smart homes and social robots. To endow such environments with truly autonomous behaviours, algorithms must extract semantically meaningful information from whichever sensor data is available. Human activity recognition is one of the most active fields of research within this context. Proposed approaches vary according to the input modality and the environments considered. Different from others, this paper addresses the problem of recognising heterogeneous activities of daily living centred in home environments considering simultaneously data from videos, wearable IMUs and ambient sensors. For this, two contributions are presented. The first is the creation of the Heriot-Watt University/University of Sao Paulo (HWU-USP) activities dataset, which was recorded at the Robotic Assisted Living Testbed at Heriot-Watt University. This dataset differs from other multimodal datasets due to the fact that it consists of daily living activities with either periodical patterns or long-term dependencies, which are captured in a very rich and heterogeneous sensing environment. In particular, this dataset combines data from a humanoid robot’s RGBD (RGB + depth) camera, with inertial sensors from wearable devices, and ambient sensors from a smart home. The second contribution is the proposal of a Deep Learning (DL) framework, which provides multimodal activity recognition based on videos, inertial sensors and ambient sensors from the smart home, on their own or fused to each other. The classification DL framework has also validated on our dataset and on the University of Texas at Dallas Multimodal Human Activities Dataset (UTD-MHAD), a widely used benchmark for activity recognition based on videos and inertial sensors, providing a comparative analysis between the results on the two datasets considered. Results demonstrate that the introduction of data from ambient sensors expressively improved the accuracy results.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference106 articles.

1. World Population Prospects 2019—Population Division—United Nationshttps://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html

2. Exploring the ambient assisted living domain: a systematic review

3. A Review of Internet of Things Technologies for Ambient Assisted Living Environments

4. A Benchmark Dataset for Human Activity Recognition and Ambient Assisted Living;Amato,2016

5. A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3