Healthberry 865® and Its Related, Specific, Single Anthocyanins Exert a Direct Vascular Action, Modulating Both Endothelial Function and Oxidative Stress

Author:

Carrizzo AlbinoORCID,Lizio Rosario,Di Pietro PaolaORCID,Ciccarelli MicheleORCID,Damato Antonio,Venturini Eleonora,Iannece Patrizia,Sommella Eduardo,Campiglia PietroORCID,Ockermann Philipp,Vecchione Carmine

Abstract

In recent years, epidemiological studies have identified a relationship between diet and cerebro–cardiovascular disease (CVD). In this regard, there is a promising dietary group for cardiovascular protection are polyphenols, especially anthocyanins. Vascular reactivity studies were performed using Healthberry 865® and constituent single anthocyanins to characterize vasomotor responses; immunofluorescence analysis with dichlorofluorescein diacetate and dihydroethidium were used to evaluate nitric oxide and oxidative stress; lucigenin assay was used to measure NADPH oxidase activity; and gel electrophoresis and immunoblotting were used to dissect the molecular mechanisms involved. We demonstrated that Healthberry 865® exerts an important vasorelaxant effect of resistance artery functions in mice. Its action is mediated by nitric oxide release through the intracellular signaling PI3K/Akt. Moreover, behind its capability of modulating vascular tone, it also exerts an important antioxidant effect though the modulation of the NADPH oxidase enzyme. Interestingly, its cardiovascular properties are mediated by the selective action of different anthocyanins. Finally, the exposure of human dysfunctional vessels to Healthberry 865® significantly reduces oxidative stress and improves NO bioavailability. Although further investigations are needed, our data demonstrate the direct role of Healthberry 865® on the modulation of vasculature, both on the vasorelaxation and on oxidative stress; thus, supporting the concept that a pure mixture of anthocyanins could be helpful in preventing the onset of vascular dysfunction associated with the development of CVD.

Funder

Università degli Studi di Salerno

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3