Radical Response: Effects of Heat Stress-Induced Oxidative Stress on Lipid Metabolism in the Avian Liver

Author:

Emami Nima K.,Jung Usuk,Voy Brynn,Dridi Sami

Abstract

Lipid metabolism in avian species places unique demands on the liver in comparison to most mammals. The avian liver synthesizes the vast majority of fatty acids that provide energy and support cell membrane synthesis throughout the bird. Egg production intensifies demands to the liver as hepatic lipids are needed to create the yolk. The enzymatic reactions that underlie de novo lipogenesis are energetically demanding and require a precise balance of vitamins and cofactors to proceed efficiently. External stressors such as overnutrition or nutrient deficiency can disrupt this balance and compromise the liver’s ability to support metabolic needs. Heat stress is an increasingly prevalent environmental factor that impairs lipid metabolism in the avian liver. The effects of heat stress-induced oxidative stress on hepatic lipid metabolism are of particular concern in modern commercial chickens due to the threat to global poultry production. Chickens are highly vulnerable to heat stress because of their limited capacity to dissipate heat, high metabolic activity, high internal body temperature, and narrow zone of thermal tolerance. Modern lines of both broiler (meat-type) and layer (egg-type) chickens are especially sensitive to heat stress because of the high rates of mitochondrial metabolism. While this oxidative metabolism supports growth and egg production, it also yields oxidative stress that can damage mitochondria, cellular membranes and proteins, making the birds more vulnerable to other stressors in the environment. Studies to date indicate that oxidative and heat stress interact to disrupt hepatic lipid metabolism and compromise performance and well-being in both broilers and layers. The purpose of this review is to summarize the impact of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Recent advances that shed light on molecular mechanisms and potential nutritional/managerial strategies to counteract the negative effects of heat stress-induced oxidative stress to the avian liver are also integrated.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3