Propagation of Mitochondria-Derived Reactive Oxygen Species within the Dipodascus magnusii Cells

Author:

Rogov Anton G.,Goleva Tatiana N.,Epremyan Khoren K.,Kireev Igor I.,Zvyagilskaya Renata A.

Abstract

Mitochondria are considered to be the main source of reactive oxygen species (ROS) in the cell. It was shown that in cardiac myocytes exposed to excessive oxidative stress, ROS-induced ROS release is triggered. However, cardiac myocytes have a network of densely packed organelles that do not move, which is not typical for the majority of eukaryotic cells. The purpose of this study was to trace the spatiotemporal development (propagation) of prooxidant-induced oxidative stress and its interplay with mitochondrial dynamics. We used Dipodascus magnusii yeast cells as a model, as they have advantages over other models, including a uniquely large size, mitochondria that are easy to visualize and freely moving, an ability to vigorously grow on well-defined low-cost substrates, and high responsibility. It was shown that prooxidant-induced oxidative stress was initiated in mitochondria, far preceding the appearance of generalized oxidative stress in the whole cell. For yeasts, these findings were obtained for the first time. Preincubation of yeast cells with SkQ1, a mitochondria-addressed antioxidant, substantially diminished production of mitochondrial ROS, while only slightly alleviating the generalized oxidative stress. This was expected, but had not yet been shown. Importantly, mitochondrial fragmentation was found to be primarily induced by mitochondrial ROS preceding the generalized oxidative stress development.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Foundation for Basic Research

Russian Science Foundation

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3