Lignin Nanoparticles: A Promising Tool to Improve Maize Physiological, Biochemical, and Chemical Traits

Author:

Del Buono DanieleORCID,Luzi FrancescaORCID,Puglia DeboraORCID

Abstract

Lignin, and its derivatives, are the subject of current research for the exciting properties shown by this biomass. Particularly attractive are lignin nanoparticles for their eco- and biocompatibility compared to other nanomaterials. In this context, the effect of nanostructured lignin microparticles (LNP), obtained from alkaline lignin by acid treatment, on maize plants was investigated. To this end, maize seeds were primed with LNP at five concentrations: 80 mg L−1 (T80), 312 mg L−1 (T312), 1250 mg L−1 (T1250), 5000 mg L−1 (T5000) and 20,000 mg L−1 (T20000). Concerning the dose applied, LNP prompted positive effects on the first stages of maize development (germination and radicle length). Furthermore, the study of plant growth, biochemical and chemical parameters on the developed plants indicated that concerning the dose applied. LNP stimulated beneficial effects on the seedlings (fresh weight and length of shoots and roots). Besides, specific treatments increased the content of chlorophyll (a and b), carotenoid, and anthocyanin. Finally, the soluble protein content showed a positive trend in response to specific dosages. These effects are significant, given the essential biological function performed by these biomolecules. In conclusion, this research indicates as the nanostructured lignin microparticles can be used, at appropriate dosages, to induce positive biological responses in maize. This beneficial action deserves attention as it candidates LNP for biostimulating a crop through seed priming.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3