Abstract
The importance of glucose in many biological processes continues to garner increasing research interest in the design and development of efficient biotechnology for the sensitive and selective monitoring of glucose. Here we report on a surface-enhanced Raman scattering (SERS) detection of 4-mercaptophenyl boronic acid (4-MPBA)-immobilized gold-silver core-shell assembled silica nanostructure (SiO2@Au@Ag@4-MPBA) for quantitative, selective detection of glucose in physiologically relevant concentration. This work confirmed that 4-MPBA converted to 4-mercaptophenol (4-MPhOH) in the presence of H2O2. In addition, a calibration curve for H2O2 detection of 0.3 µg/mL was successfully detected in the range of 1.0 to 1000 µg/mL. Moreover, the SiO2@Au@Ag@4-MPBA for glucose detection was developed in the presence of glucose oxidase (GOx) at the optimized condition of 100 µg/mL GOx with 1-h incubation time using 20 µg/mL SiO2@Au@Ag@4-MPBA and measuring Raman signal at 67 µg/mL SiO2@Au@Ag. At the optimized condition, the calibration curve in the range of 0.5 to 8.0 mM was successfully developed with an LOD of 0.15 mM. Based on those strategies, the SERS detection of glucose can be achieved in the physiologically relevant concentration range and opened a great promise to develop a SERS-based biosensor for a variety of biomedicine applications.
Subject
General Materials Science,General Chemical Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献