Abstract
In recent decades, landslide displacement forecasting has received increasing attention due to its ability to reduce landslide hazards. To improve the forecast accuracy of landslide displacement, a dynamic forecasting model based on variational mode decomposition (VMD) and a stack long short-term memory network (SLSTM) is proposed. VMD is used to decompose landslide displacement into different displacement subsequences, and the SLSTM network is used to forecast each displacement subsequence. Then, the forecast values of landslide displacement are obtained by reconstructing the forecast values of all displacement subsequences. On the other hand, the SLSTM networks are updated by adding the forecast values into the training set, realizing the dynamic displacement forecasting. The proposed model was verified on the Dashuitian landslide in China. The results show that compared with the two advanced forecasting models, long short-term memory (LSTM) network, and empirical mode decomposition (EMD)–LSTM network, the proposed model has higher forecast accuracy.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献