Deformation Behavior and Constitutive Model of 34CrNi3Mo during Thermo-Mechanical Deformation Process

Author:

Jia Xiang-DongORCID,Zhou Ying,Wang Yi-Ning

Abstract

With higher creep strength and heat resistance, 34CrNi3Mo has been widely used in the production of engine rotors, steam turbine impellers, and turbine blades. To investigate the hot deformation behaviors of 34CrNi3Mo steel, hot compressive tests were conducted on a Gleeble-3500 thermomechanical simulator, under the temperature range of 1073 K–1373 K and strain rate ranges of 0.1 s−1–20 s−1. The results show that the flow stress of 34CrNi3Mo steel under high temperatures is greatly influenced by the deformation temperature and strain rate, and it is the result of the interaction between strain hardening, dynamic recovery, and recrystallization. Under the same deformation rate, as the deformation temperature increases, the softening effect of dynamic recrystallization and dynamic recovery gradually increases, and the flow stress gradually decreases. Under the same deformation temperature, with the increase of strain rate, the influence of strain hardening on 34CrNi3Mo steel is gradually in power, and the flow stress gradually increases. To predict the flow stress of 34CrNi3Mo steel accurately, a modified Arrhenius-type constitutive model considering the effects of strain, temperature, and strain rate at the same time was made based on the experiment data. On this basis, the evolution law of deformation activation and instability characteristics of 34CrNi3Mo steel were investigated, and the processing map of 34CrNi3Mo steel was established. The formability of 34CrNi3Mo steel under high temperature deformation was revealed, which provided a theoretical foundation of the equation of reasonable hot working process.

Funder

China Postdoctoral Science Foundation

Jiangsu Postdoctoral Research Funding Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3