Evaluate Pavement Skid Resistance Performance Based on Bayesian-LightGBM Using 3D Surface Macrotexture Data

Author:

Hu Yuanjiao,Sun Zhaoyun,Han Yuxi,Li Wei,Pei LiliORCID

Abstract

The lack of skid resistance performance is a crucial factor leading to road traffic accidents. The pavement surface friction is an essential indicator for measuring the skid resistance. The surface texture structure significantly affects the friction between the tire and the pavement, determining the pavement skid resistance. To deeply study the relationship between surface texture structure and pavement skid resistance performance, two types of asphalt mixture specimens, asphalt concrete (AC) and open-graded friction course (OGFC), are prepared for the skid resistance performance test. Firstly, a high-precision 3D smart sensor Gocator 3110 is used to collect the 3D point cloud data of the asphalt mixture surface texture. The British pendulum tester is used to measure the friction. Secondly, ten feature parameters are extracted to describe the 3D macrotexture characteristics. A data set containing 10 features and 200 groups of texture and friction data was also constructed. Meanwhile, the influence of macro-texture features on the skid resistance performance is discussed. Finally, an optimized Bayesian-LightGBM model is trained based on the constructed dataset. Compared with LightGBM, XGBoost, RF, and SVR algorithms, the Bayesian-LightGBM model can evaluate skid resistance more accurately. The R2 value of the proposed model is 92.83%. The research results prove that ten macrotexture features contribute to the evaluation of skid resistance to varying degrees. Furthermore, compared with AC mixture specimen, the texture surface of OGFC mixture specimen has more obvious height characteristics and higher roughness. The skid resistance of OGFC mixture specimens is better than that of AC.

Funder

National Natural Science Foundation of China

National Key Research and Development Program, China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3