Usefulness of Thulium-Doped Fiber Laser and Diode Laser in Zero Ischemia Kidney Surgery—Comparative Study in Pig Model

Author:

Żywicka Bogusława,Bujok JolantaORCID,Janeczek MaciejORCID,Czerski Albert,Szymonowicz Maria,Dobrzyński MaciejORCID,Świderski JacekORCID,Rybak ZbigniewORCID

Abstract

Background: The aim of this study was to evaluate the usefulness of a thulium-doped fiber laser and a diode laser in zero ischemia kidney surgery, by carrying out a comparative study in a pig model. Material and methods: Research was carried out on 12 pigs weighing 30 kg each. A thulium-doped fiber laser (TDFL) and a diode laser (DL) operating at wavelengths of 1940 and 1470 nm, respectively, were used. The cut sites were assessed both macroscopically and microscopically. The zone of thermal damage visible in the histopathological preparations was divided into superficial and total areas. Results: During partial nephrectomy, moderate to minimal bleeding was observed, which did not require additional hemostatic measures. All animals survived the procedure. On day 0, the total thermal damage depth was 837.8 µm for the TDFL and 1175.0 µm for the DL. On day 7, the depths were 1556.2 and 2301.7 µm, respectively. On day 14, the overall thermal damage depth for the DL was the greatest (6800 µm). The width of the superficial zone was significantly reduced on days 7 and 14 after TDFL application. Conclusion: Both lasers are suitable for partial wedge nephrectomy without ischemia in pigs. The TDFL produced similar or better hemostasis than the DL, with a smaller zone of thermal damage and, therefore, seems more suitable for application in human medicine.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3