Impacts and Countermeasures of Present-Day Stress State and Geological Conditions on Coal Reservoir Development in Shizhuang South Block, Qinshui Basin

Author:

Men Xinyang1,Tao Shu1,Chen Shida1,Wu Heng1,Zhang Bin1

Affiliation:

1. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

This study investigates the reservoir physical properties, present-day stress, hydraulic fracturing, and production capacity of No. 3 coal in the Shizhuang south block, Qinshui Basin. It analyzes the control of in situ stress on permeability and hydraulic fracturing, as well as the influence of geo-engineering parameters on coalbed methane (CBM) production capacity. Presently, the direction of maximum horizontal stress is northeast–southwest, with local variations. The stress magnitude increases with burial depth, while the stress gradient decreases. The stress field of strike-slip faults is dominant and vertically continuous. The stress field of normal faults is mostly found at depths greater than 800 m, whereas the stress field of reverse faults is typically found at depths shallower than 700 m. Permeability, ranging from 0.003 to 1.08 mD, is controlled by in situ stress and coal texture, both of which vary significantly with tectonics. Hydraulic fracturing design should consider variations in stress conditions, pre-existing fractures, depth, structural trends, and coal texture, rather than employing generic schemes. At greater depths, higher pumping rates and treatment pressures are required to reduce fracture complexity and enhance proppant filling efficiency. The Shizhuang south block is divided into five zones based on in situ stress characteristics. Zones III and IV exhibit favorable geological conditions, including high porosity, permeability, and gas content. These zones also benefit from shorter gas breakthrough times, relatively higher gas breakthrough pressures, lower daily water production, and a higher ratio of critical desorption pressure to initial reservoir pressure. Tailored fracturing fluid and proppant programs are proposed for different zones to optimize subsequent CBM development.

Funder

China United Coalbed Methane Co., Ltd. Seven-Year Action Plan Technology Project: Research on Coalbed Methane Storage and Transportation Technology

the National Natural Science Foundation of China

Tackling applied science and technology projects of China National Petroleum Corporation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3