Microwave Deicing Efficiency: Study on the Difference between Microwave Frequencies and Road Structure Materials

Author:

Ding Longting,Wang Xuancang,Zhang WengangORCID,Wang Shuai,Zhao Jing,Li Yongquan

Abstract

A method of deicing using microwave heating is proposed to make scientific and economical road deicing in a cold area, and to make up for deficiencies in the existing methods for melting snow and ice. This paper proposes to define microwave deicing efficiency as the heating rate of a concrete surface when heated to 0 °C (the efficiency of deicing is equal to the difference divided by heating time, which is between 0 °C and the initial temperature at the junction of ice and concrete). Based on the mechanism of microwave heating and deicing, a method combining the finite element simulation model with indoor experiments was proposed to study the deicing efficiency of microwaves, and the effects of different microwave frequencies and different road structure materials on microwave deicing efficiency were analyzed. The results show that the microwave frequency and road structure materials have a great influence on microwave deicing. For asphalt concrete, the ice melting efficiency of 5.8 GHz is 4.31 times that of 2.45 GHz, but the heating depth is less than that of 2.45 GHz. At 2.45 GHz, the melting efficiency of cement concrete is 3.89 times that of asphalt concrete. At 5.8 GHz, the melting efficiency of cement concrete is 5.23 times that of asphalt concrete. Through the consistency of the simulation and experimental results, the validity of the simulation model based on the finite element theory is verified. The results provide theoretical guidance and a practical basis for future applications of microwave deicing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3