Abstract
A method of deicing using microwave heating is proposed to make scientific and economical road deicing in a cold area, and to make up for deficiencies in the existing methods for melting snow and ice. This paper proposes to define microwave deicing efficiency as the heating rate of a concrete surface when heated to 0 °C (the efficiency of deicing is equal to the difference divided by heating time, which is between 0 °C and the initial temperature at the junction of ice and concrete). Based on the mechanism of microwave heating and deicing, a method combining the finite element simulation model with indoor experiments was proposed to study the deicing efficiency of microwaves, and the effects of different microwave frequencies and different road structure materials on microwave deicing efficiency were analyzed. The results show that the microwave frequency and road structure materials have a great influence on microwave deicing. For asphalt concrete, the ice melting efficiency of 5.8 GHz is 4.31 times that of 2.45 GHz, but the heating depth is less than that of 2.45 GHz. At 2.45 GHz, the melting efficiency of cement concrete is 3.89 times that of asphalt concrete. At 5.8 GHz, the melting efficiency of cement concrete is 5.23 times that of asphalt concrete. Through the consistency of the simulation and experimental results, the validity of the simulation model based on the finite element theory is verified. The results provide theoretical guidance and a practical basis for future applications of microwave deicing.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献