Abstract
When the level set algorithm is used to segment an image, the level set function must be initialized periodically to ensure that it remains a signed distance function (SDF). To avoid this defect, an improved regularized level set method-based image segmentation approach is presented. First, a new potential function is defined and introduced to reconstruct a new distance regularization term to solve this issue of periodically initializing the level set function. Second, by combining the distance regularization term with the internal and external energy terms, a new energy functional is developed. Then, the process of the new energy functional evolution is derived by using the calculus of variations and the steepest descent approach, and a partial differential equation is designed. Finally, an improved regularized level set-based image segmentation (IRLS-IS) method is proposed. Numerical experimental results demonstrate that the IRLS-IS method is not only effective and robust to segment noise and intensity-inhomogeneous images but can also analyze complex medical images well.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Foundation of Henan Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献