Recursive Neural Network as a Multiple Input–Multiple Output Speed Controller for Electrical Drive of Three-Mass System

Author:

Zawirski Krzysztof1ORCID,Brock Stefan2ORCID,Nowopolski Krzysztof2ORCID

Affiliation:

1. Department of Electrical Engineering, Stanislaw Staszic State University of Applied Sciences in Pila, 64-920 Pila, Poland

2. Faculty of Automatic Control, Robotics and Electrical Engineering, Poznan University of Technology, 60-965 Poznań, Poland

Abstract

Electrical drive systems are commonly applied for the mechanisms of precise movement, where having a high-quality position and high-quality speed control is especially valuable. Very often, the mechanical part of these systems reveals resonant properties that are related to the limited stiffness of the interconnection between subsequent parts of the mechanism. In most cases, this sort of system may be described as a model of several linked masses. If only the structure of the mechanical part is known and the corresponding parameters are constant and identified, the demanded control quality may be obtained using a properly tuned ADRC or PID controller equipped with appropriate anti-resonance filtration. However, if the parameters of the mechanical part are variant, adaptive control may be considered as a solution. In this paper, artificial neural network (ANN) is considered to be a speed controller and its training method assures adaptation to the unknown mechanical parameters. The paper is particularly focused on a three-mass system, which possesses, due to its structure, two resonant frequencies. The unique property of the analyzed system is the application of drive units at both ends of the system, so that the controller has the ability to influence the resonant system from both sides. The coordination of the drive unit is performed by the aforementioned ANN, from which two outputs affect the drive units independently. The derivation of the mathematical model is followed by its implementation in a computer simulation and finally the evaluation in a dedicated laboratory setup, the construction of which is also presented in the paper.

Funder

National Science Centre

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3