Energy Management Model for a Remote Microgrid Based on Demand-Side Energy Control

Author:

Benavides Dario1ORCID,Arévalo Paul1ORCID,Ortega Antonio Cano1ORCID,Sánchez-Sutil Francisco1ORCID,Villa-Ávila Edisson1ORCID

Affiliation:

1. Department of Electrical Engineering, EPS Linares, University of Jaén, 23700 Jaén, Spain

Abstract

The internet of things is undergoing rapid expansion, transforming diverse industries by facilitating device connectivity and supporting advanced applications. In the domain of energy production, internet of things holds substantial promise for streamlining processes and enhancing efficiency. This research introduces a comprehensive monitoring and energy management model tailored for the University of Cuenca’s microgrid system, employing internet of things and ThingSpeak as pivotal technologies. The proposed approach capitalizes on intelligent environments and employs ThingSpeak as a robust platform for presenting and analyzing data. Through the integration of internet of things devices and sensors, the photovoltaic system’s parameters, including solar radiation and temperature, are monitored in real time. The collected data undergo analysis using sophisticated models and are presented visually through ThingSpeak, facilitating effective energy management and decision making. The developed monitoring system underwent rigorous testing in a laboratory microgrid setup, where the photovoltaic system is interconnected with other generation and storage systems, as well as the electrical grid. This seamless integration enhances visibility and control over the microgrid’s energy production. The results attest to the successful implementation of the monitoring system, highlighting its efficacy in improving the supervision, automation, and analysis of daily energy production. By leveraging internet of things technologies and ThingSpeak, stakeholders gain access to real-time data, enabling them to analyze performance trends and optimize energy resources. This research underscores the practical application of internet of things in enhancing the monitoring and management of energy systems with tangible benefits for stakeholders involved.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3