Affiliation:
1. Natural Resources Canada, CanmetENERGY, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada
2. Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Street, Ottawa, ON K1N 6N5, Canada
Abstract
To achieve net-zero emissions by the year 2050, carbon capture, utilization, and storage technologies must be implemented to decarbonize sectors with hard-to-abate emissions. Pressurized chemical looping (PCL) with a novel reactor design called a plug flow with internal recirculation (PFIR) fluidized bed is proposed as an attractive carbon capture technology to decarbonize small- and medium-scale emitters. The objective of this work is to examine the solid circulation rate between redox reactors in a cold flow chemical looping facility using an energy balance approach. The effects of static bed height, weir opening height, purge configuration, and gas flow rate on solid circulation rate were investigated. It was determined that parameters that greatly affected the total gas momentum, such as the fluidization ratio or number of purge rows, tended to also have a large effect on solid circulation rate. Parameters that had a small effect on total gas momentum, such as bed height, did not have a measurable effect on solid circulation rate. It was noted that parameters that posed a restriction to solids flow, such as a vertical purge jet or the weir itself, decreased the solid circulation rate compared to similar tests without restrictions.
Funder
Program for Energy Research and Development (PERD) at Natural Resources Canada, Government of Canada
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction