SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention

Author:

Ba RuiORCID,Chen Chen,Yuan Jing,Song Weiguo,Lo Siuming

Abstract

A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is imperative for wildfire detection and monitoring. However, the commonly used smoke detection methods mainly focus on smoke discrimination from a few specific classes, which reduces their applicability in different regions of various classes. To this end, in this paper, we present a new large-scale satellite imagery smoke detection benchmark based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, namely USTC_SmokeRS, consisting of 6225 satellite images from six classes (i.e., cloud, dust, haze, land, seaside, and smoke) and covering various areas/regions over the world. To build a baseline for smoke detection in satellite imagery, we evaluate several state-of-the-art deep learning-based image classification models. Moreover, we propose a new convolution neural network (CNN) model, SmokeNet, which incorporates spatial and channel-wise attention in CNN to enhance feature representation for scene classification. The experimental results of our method using different proportions (16%, 32%, 48%, and 64%) of training images reveal that our model outperforms other approaches with higher accuracy and Kappa coefficient. Specifically, the proposed SmokeNet model trained with 64% training images achieves the best accuracy of 92.75% and Kappa coefficient of 0.9130. The model trained with 16% training images can also improve the classification accuracy and Kappa coefficient by at least 4.99% and 0.06, respectively, over the state-of-the-art models.

Funder

Fundamental Research Funds for the Central Universities

the Research Grants Council, University Grants Committee of the Hong Kong Special Administrative Region

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3