Stress Distribution in Wear Analysis of Nano-Y2O3 Dispersion Strengthened Ni-Based μm-WC Composite Material Laser Coating

Author:

Tao Li1,Yang Yang1,Zhu Wenliang1,Sun Jian2,Wu Jiale1,Xu Hao1,Yan Lu1,Yang Anhui1,Xu Zhilong1

Affiliation:

1. Department of Robot Engineering, School of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005, China

2. School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, China

Abstract

Oxide-dispersion- and hard-particle-strengthened (ODS) laser-cladded single-layer multi-tracks with a Ni-based alloy composition with 20 wt.% μm-WC particles and 1.2 wt.% nano-Y2O3 addition were produced on ultra-high-strength steel in this study. The investigation of the composite coating designed in this study focused on the reciprocating friction and wear workpiece surface under heavy load conditions. The coating specimens were divided into four groups: (i) Ni-based alloy, nano-Y2O3, and 2 μm-WC (2 μm WC-Y/Ni); (ii) Ni-based alloy with added 2 μm-WC (2 μmWC/Ni); (iii) Ni-based alloy with added 80 μm-WC (80 μmWC/Ni); and (iv) base metal ultra-high-strength alloy steel 30CrMnSiNi2A. Four conclusions were reached: (1) Nano-Y2O3 could effectively inhibit the dissolution of 2 μm-WC. (2) It can be seen from the semi-space dimensionless simulation results that the von Mises stress distribution of the metal laser composite coating prepared with a 2 μm-WC particle additive was very uniform and it had better resistance to normal impact and tangential loads than the laser coating prepared with the 80 μm-WC particle additive. (3) The inherent WC initial crack and dense stress concentration in the 80 μm-WC laser coating could easily cause dislocations to accumulate, as shown both quantitatively and qualitatively, resulting in the formation of micro-crack nucleation. After the end of the running-in phase, the COF of the 2 μm-WC-Y2O3/Ni component samples stabilized at the minimum of the COF of the four samples. The numerical order of the four COF curves was stable from small to large as follows: 2 μm-WC-Y2O3/Ni, 2 μm-WC/Ni, 80 μm-WC/Ni, and 30CrMnSiNi2A. (4) The frictional volume loss rate of 2 μm-WC-Y2O3/Ni was 1.3, which was significantly lower than the corresponding values of the other three components: 2.4, 3.5, and 13.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3