Enhancing Microstructural and Mechanical Properties of Ferrous Medium-Entropy Alloy through Cu Addition and Post-Weld Heat Treatment in Gas Tungsten Arc Welding

Author:

Yoo Seonghoon1ORCID,Lee Yoona1ORCID,Choi Myeonghawn1,Nam Hyunbin2ORCID,Nam Sangyong3ORCID,Kang Namhyun1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea

2. Department of Joining Technology, Korea Institute of Materials Science, Changwon 51508, Republic of Korea

3. Department of Materials Engineering and Convergence Technology, Green Energy Convergence Research Institute, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

This study investigates the impact of a high-entropy alloy filler metal coated with copper (Cu) and post-weld heat treatment (PWHT) on the weldability of a ferrous medium-entropy alloy (MEA) in gas tungsten arc welding. The addition of 1-at% Cu had an insignificant effect on the microstructural behaviour, despite a positive mixing enthalpy with other elements. It was observed that a small amount of Cu was insufficient to induce phase separation into the Cu-rich phase and refine the microstructure of the as-welded specimen. However, with an increase in the PWHT temperature, the tensile strength remained mostly consistent, while the elongation significantly increased (elongation of as welded, PWHT700, PWHT800, and PWHT 900 were 19, 43, 55 and 68%, respectively). Notably, the PWHT temperature of 900 °C yielded the most desirable results by shifting the fracture location from the coarse-grained heat-affected zone (CGHAZ) to base metal (BM). This was due to significant recrystallisation and homogenised hardness of the cold-rolled BM during PWHT. However, the CGHAZ with coarse grains induced by the welding heat input remained invariant during the PWHT. This study proposes a viable PHWT temperature (900 °C) for enhancing the weldability of cold-rolled ferrous MEA without additional process.

Funder

Ministry of Trade, Industry and Energy

Pusan National University

Korea Government

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3