Affiliation:
1. School of Civil Engineering, Central South University, Changsha 410083, China
2. Guangxi Xinfazhan Communication Group Co., Ltd., Guangxi Zhuang Autonomous Region, Nanning 530029, China
Abstract
To investigate the influencing factors and mechanisms of shear strength of red clay with a high liquid limit, which was selected at different milepost locations based on the Nanning Bobai Nabu Section Project of the Nanning Zhanjiang Expressway, the basic physical properties of red clay were determined using a liquid plastic limit test, compaction test, inductively coupled plasma optical emission spectrometer (ICP-OES), and X-ray fully automatic diffractometer (XRD). Red clay with a high liquid limit was selected. Furthermore, the direct shear test was used to study the effect of different water contents and compaction degrees on the shear strength. The experimental results demonstrate that under the same compaction degree, the shear stress of the soil sample increases significantly with an increase in normal stress, and the greater the water content, the smaller the shear stress of the soil sample. At 200 kPa, the shear strength of soil samples with 24% water content is 57%, 46%, and 35% of the shear strength of soil samples with 15% water content under different compaction degrees(K) of 86%, 90%, and 93%, respectively. Under the same moisture content, the shear stress of the soil sample shows an increasing trend with an increase in the degree of compaction, and the greater the compaction degrees, the greater the shear stress of the soil sample. The cohesion c and internal friction angle φ of soil samples increase with an increase in the compaction degree, but the increase in cohesion c is also affected by the water content. Under the condition of low water content, the cohesion c of soil samples can be increased by 1.06 times when the water content is 15% and by 0.47 times when the water content is 18%. Under the condition of high water content, the cohesion c of soil samples with 21% water content only increases by 0.3 times, and that with 24% water content only increases by 0.35 times.
Subject
General Materials Science
Reference37 articles.
1. Geotechnical characteristics of volcanic red clay soil related to geoengineering problem in sekincau, sumatra, Indonesia;Iqbal;Int. J. Adv. Sci. Technol.,2020
2. Adsorption Capacity, Isotherm, Kinetic, and Thermodynamic Studies on Adsorption Behavior of Malachite Green onto Natural Red Clay;Sevim;Environ. Prog. Sustain. Energy,2021
3. Bernardo-Arugay, I.C., Echavez, F.J.A., Lumasag, L.R., Cahigao, J.P., Aligno, E.U., Dispo, R.V.M., Dionio, S.K.D., Saladaga, C.J.C., Bato, B.L., and Simplicio, A.M.R. (2023). Evaluation of Linamon Red Clay, Salvador Black Cinder and Kapatagan Diatomaceous Earth of the Southern Philippines. Minerals, 13.
4. Mechanical properties and microstructure of lime-treated red clay;Chen;KSCE J. Civ. Eng.,2021
5. Yue, B., Zhao, Z., and Qian, Z. (2022). Influence of Five Additives on No Loading Swelling Potential of Red Clay. Appl. Sci., 12.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献