Direct Classic Route of Generating Mono-Color EM-Pulse with Attosecond-Level Duration

Author:

Lin HaiORCID,Liu Chengpu

Abstract

Current conception of attosecond pulse is based on Fourier optics and refers to an electromagnetic pulse with a broad, homogeneous weight Fourier spectrum. Its preparation/generation is along an indirect route in which the output of commercial available μ m-level wavelength laser is “processed” by elaborately designed optics medium allowing high-order harmonics effect to change its Fourier spectrum to be of a flat high-frequency tail. Such an indirect, quantum scheme is limited by its efficiency in high-order harmonics generation. For higher efficiency, other routes for the same goal, i.e., light pulse with an attosecond-level duration, deserve to be tried. The method proposed is a direct, classic scheme. It is to directly control the time duration of classic electrons doing acceleration/deceleration in a feasible, elaborately-designed driving DC fields configuration. The duration can be adjusted by initial electrons velocity, geometric dimension of driving field configuration. The maximum strength of a generated pulse is controlled by the number of electrons. The frequency of a generated pulse is controlled by initial electrons position in the configuration. The shortest duration of single pulse can be down to sub-attosecond-level according to currently available minimum geometric dimension of driving field and suitable gesture of electrons entering into the driving field configuration. This work displays a feasible, direct, classic route of achieving EM pulse with an attosecond-level duration. In particular, the pulse is mono-color, rather than a superposition of Fourier components with nearly-equal weight.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3