Thermal Performance Optimization of Integrated Microchannel Cooling Plate for IGBT Power Module

Author:

Xu Hanyang1,Huang Jiabo1,Tian Wenchao1,Li Zhao1

Affiliation:

1. School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China

Abstract

In high-integration electronic components, the insulated-gate bipolar transistor (IGBT) power module has a high working temperature, which requires reasonable thermal analysis and a cooling process to improve the reliability of the IGBT module. This paper presents an investigation into the heat dissipation of the integrated microchannel cooling plate in the silicon carbide IGBT power module and reports the impact of the BL series micropump on the efficiency of the cooling plate. The IGBT power module was first simplified as an equivalent-mass block with a mass of 62.64 g, a volume of 15.27 cm3, a density of 4.10 g/cm3, and a specific heat capacity of 512.53 J/(kg·K), through an equivalent method. Then, the thermal performance of the microchannel cooling plate with a main channel and a secondary channel was analyzed and the design of experiment (DOE) method was used to provide three factors and three levels of orthogonal simulation experiments. The three factors included microchannel width, number of secondary inlets, and inlet diameter. The results show that the microchannel cooling plate significantly reduces the temperature of IGBT chips and, as the microchannel width, number of secondary inlets, and inlet diameter increase, the junction temperature of chips gradually decreases. The optimal structure of the cooling plate is a microchannel width of 0.58 mm, 13 secondary inlets, and an inlet diameter of 3.8 mm, and the chip-junction temperature of this structure is decreased from 677 °C to 77.7 °C. In addition, the BL series micropump was connected to the inlet of the cooling plate and the thermal performance of the microchannel cooling plate with a micropump was analyzed. The micropump increases the frictional resistance of fluid flow, resulting in an increase in chip-junction temperature to 110 °C. This work demonstrates the impact of micropumps on the heat dissipation of cooling plates and provides a foundation for the design of cooling plates for IGBT power modules.

Funder

Natural Science Foundation of Shaanxi Province of China

Fundamental Research Funds for the Central Universities in China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3