LWSNet: A Point-Based Segmentation Network for Leaf-Wood Separation of Individual Trees

Author:

Jiang Tengping1234ORCID,Zhang Qinyu123,Liu Shan123,Liang Chong123,Dai Lei4,Zhang Zequn5ORCID,Sun Jian123,Wang Yongjun123ORCID

Affiliation:

1. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

2. Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210093, China

3. State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210093, China

4. State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

5. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

The accurate leaf-wood separation of individual trees from point clouds is an important yet challenging task. Many existing methods rely on manual features that are time-consuming and labor-intensive to distinguish between leaf and wood points. However, due to the complex interlocking structure of leaves and wood in the canopy, these methods have not yielded satisfactory results. Therefore, this paper proposes an end-to-end LWSNet to separate leaf and wood points within the canopy. First, we consider the linear and scattering distribution characteristics of leaf and wood points and calculate local geometric features with distinguishing properties to enrich the original point cloud information. Then, we fuse the local contextual information for feature enhancement and select more representative features through a rearrangement attention mechanism. Finally, we use a residual connection during the decoding stage to improve the robustness of the model and achieve efficient leaf-wood separation. The proposed LWSNet is tested on eight species of trees with different characteristics and sizes. The average F1 score for leaf-wood separation is as high as 97.29%. The results show that this method outperforms the state-of-the-art leaf-wood separation methods in previous studies, and can accurately and robustly separate leaves and wood in trees of different species, sizes, and structures. This study extends the leaf-wood separation of tree point clouds in an end-to-end manner and demonstrates that the deep-learning segmentation algorithm has a great potential for processing tree and plant point clouds with complex morphological traits.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3