Spatio-Temporal Analysis of Simulated Summer Extreme Precipitation Events under RCP4.5 Scenario in the Middle and Lower Reaches of the Yangtze River Basin

Author:

Liu Lu1ORCID,Sun Weiyi1,Liu Jian123

Affiliation:

1. Key Laboratory for Virtual Geographic Environment, Ministry of Education, State Key Laboratory Cultivation Base of Geographical Environment Evolution of Jiangsu Province, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing 210023, China

2. Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, China

3. Open Studio for the Simulation of Ocean-Climate-Isotope, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

Abstract

In the context of global warming, the frequency and intensity of extreme climate events, especially extreme precipitation events, have increased. The middle and lower reaches of the Yangtze River Basin are important areas for economic development, and are also one of the areas where rainstorms and flood disasters frequently occur in China. Improving the prediction of future summer extreme precipitation in this region under the greenhouse gas emission pathway that aligns with sustainable economic development (Representative Concentration Pathway 4.5, RCP4.5) will help decision-makers better cope with the impact of increased natural disasters, such as floods. The medium-resolution CESM1.0 (Community Earth System Model 1.0) data (1° × 1°) has limitations in capturing regional climate differences. Therefore, we designed a downscale experiment using the WRF3.8 (Weather Research and Forecasting 3.8) model to obtain the daily summer precipitation grid data with 0.25° × 0.25° latitude and longitude resolution over the middle and lower reaches of the Yangtze River Basin from May to September in 2006–2030 (WRF025). The research shows that the WRF025 data is reliable in simulating the summer extreme precipitation events over the middle and lower reaches of the Yangtze River Basin, especially in the lower reaches of the Yangtze River. Compared to CESM1.0 data, WRF025 data significantly improves the ability to simulate the numerical value and distribution of summer extreme precipitation in the middle and lower reaches of the Yangtze River. Under the RCP4.5 scenario, compared to 2006–2014, there is no significant change in daily summer precipitation in the middle and lower reaches of the Yangtze River Basin during 2015–2030, with a significant decrease in daily summer extreme precipitation. There are significant regional differences in spatial distribution, with a significant decrease in Hunan and Hubei, and a significant increase in Jiangxi and Fujian. Under high-pressure control, the lower reaches of the Yangtze River are dominated by downdraft, resulting in more sunny days and less precipitation. The increase (decrease) in water vapor transport and divergence may be the reason for the increase (decrease) in extreme precipitation. The most direct factor leading to an increase (decrease) in extreme precipitation is the vertical movement upwards (downwards). Furthermore, the anomalous descent (ascent) can be well explained by the easterly (westerly) wind anomaly on the southern (northern) side of the anomalous anticyclone via the isentropic gliding mechanism.

Funder

the National Natural Science Foundation of China

the Priority Academic Development Program of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference50 articles.

1. Climate Extremes: Observations, Modeling, and Impacts;Easterling;Science,2000

2. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century;Meehl;Science,2004

3. IPCC (2013). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change;Schneider;Proc. Natl. Acad. Sci. USA,2009

5. Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century;Xu;Quatern. Int.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3