Abstract
Raman distributed optical fiber temperature sensing (RDTS) has been extensively studied for decades because it enables accurate temperature measurements over long distances. The signal-to-noise ratio (SNR) is the main factor limiting the sensing distance and temperature accuracy of RDTS. We manufacture a low water peak optical fiber (LWPF) with low transmission loss to improve the SNR for long-distance application. Additionally, an optimized denoising neural network algorithm is developed to reduce noise and improve temperature accuracy. Finally, a maximum temperature uncertainty of 1.77 °C is achieved over a 24 km LWPF with a 1 m spatial resolution and a 1 s averaging time.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Hubei Province Key Research and Development Program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献