Influence of Glycerol on Methanol Fuel Characteristics and Engine Combustion Performance

Author:

Jin Chao,Sun Tianyun,Xu Teng,Jiang Xueli,Wang Min,Zhang Zhao,Wu Yangyi,Zhang Xiaoteng,Liu HaifengORCID

Abstract

Methanol derived from solar energy is a carbon-neutral alternative fuel for engines. The low viscosity of methanol is one of the problems that restrict its direct compression ignition application in engines. Glycerol is a renewable resource derived from biomass, and its viscosity is more than 1700 times that of methanol. In this study, glycerol was mixed with methanol in different volume fractions (1–50%), and a methanol-glycerol mixture with similar viscosity to diesel was prepared. Then, the particle size, electrical conductivity, viscosity, swelling and corrosion characteristics of the mixed fuel were measured. Finally, the combustion and emission tests of methanol-glycerol mixed fuel were carried out on a heavy-duty multi-cylinder diesel engine. The results show that glycerol can effectively adjust the viscosity of the mixed fuel. The viscosity of the mixed fuel can reach 3.19 mm2/s at 20 °C when blended with 30% glycerol by volume, which meets the requirements of the national standard for diesel fuel. The addition of glycerol can alleviate the corrosion of methanol to the polymer. The test of the mixed fuel in the direct compression ignition engine shows that the thermal efficiency of methanol mixed with 5% glycerol was further improved than that of pure methanol, both of which were significantly higher than the thermal efficiency of diesel compression ignition engines. Methanol and 5% glycerol by volume blends can reduce soot and nitrogen oxide emissions while maintaining low HC and CO emissions. Therefore, proper blending of glycerol in methanol fuel can optimize the fuel properties of methanol and achieve higher thermal efficiency and lower pollutant emissions than pure methanol direct compression ignition.

Funder

National Natural Science Foundation of China

National Engineering Laboratory for Mobile Source Emission Control Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3