Digital Twins for Real-Time Scenario Analysis during Well Construction Operations

Author:

Saini Gurtej Singh,Fallah AmirHossein,Ashok Pradeepkumar,van Oort EricORCID

Abstract

Well construction is a complex multi-step process that requires decision-making at every step. These decisions, currently made by humans, are inadvertently influenced by past experiences and human factor issues, such as the situational awareness of the decision-maker. This human bias often results in operational inefficiencies or safety and environmental issues. While there are approaches and tools to monitor well construction operations, there are none that evaluate potential action sequences and scenarios and select the best possible sequence of actions. This paper defines a generalized iterative methodology for setting up a digital twin to address this shortcoming. Depending on its application, the objectives and constraints around the twin are formulated. The digital twin is then built using a cyclical process of defining the required outputs, identifying and integrating the necessary process models, and aggregating the required data streams. The twin is set up such that it is predictive in nature, thus enabling scenario analysis. The method is demonstrated here by setting up twinning systems for two different categories of problems. First, an integrated multi-model twin to replicate borehole cleaning operations for stuck-pipe prevention is developed and tested. Second, the creation, implementation, and testing of a twinning system for assisting with operational planning and logistics is demonstrated by considering the time it takes to drill a well to total depth (TD). These twins are also used to simulate multiple future scenarios to quantify the effects of different actions on eventual outcomes. Such systems can help improve operational performance by allowing more informed human, as well as automated, decision-making. Development of a system for well construction operations that integrates multiple sources of information with process and equipment models to quantify the system state and analyzes different scenarios by evaluating action sequences is a novel contribution of this paper. The approach presented here can be applied to the construction of digital twins for any well construction operation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference82 articles.

1. BP Gulf of Mexico Oil Spillhttp://www.ktiv.com/Global/story.asp?S=13386062

2. Digital Twin: Manufacturing Excellence through Virtual Factory Replication This Paper Introduces the Concept of a Whitepaper by Dr. Michael Grieveshttps://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication

3. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems;Grieves,2016

4. Inside McLaren’s Secretive F1 Mission Control Room|Digital Trendshttps://www.digitaltrends.com/cars/inside-mclaren-f1-racing-mission-control-room/

5. The Future of Manufacturing|Digital Twin|Globalhttps://new.siemens.com/global/en/company/stories/research-technologies/digitaltwin/the-future-of-manufacturing-plm-red-bull-racing.html

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3