CFD Study of High-Speed Train in Crosswinds for Large Yaw Angles with RANS-Based Turbulence Models including GEKO Tuning Approach

Author:

Szudarek MaciejORCID,Piechna AdamORCID,Prusiński PiotrORCID,Rudniak LeszekORCID

Abstract

Crosswind action on a train poses a risk of vehicle overturning or derailment. To assess if new train designs fulfill the safety requirements, computational fluid dynamics is commonly used. This article presents a comprehensive wind flow analysis on an example of a TGV high-speed train. Large yaw angle range is studied with the application of widely used Reynolds-averaged Navier–Stokes (RANS) turbulence models. The predictive performance of popular RANS-based models in that regime has not been reported extensively before. The context of simulations is a study of crosswind stability using methodology presented in norm EN 14067-6:2018. It is shown that for yaw angles up to 45 degrees, aerodynamic forces predicted by all the studied RANS-based models are consistent with experimental data. At larger yaw angles, flow structure becomes complicated, separation lines are no longer defined by geometry, and significant discrepancies between turbulence models appear, with relative differences between models up to 30%. A detailed study was performed to investigate differences between turbulence models for specific angles of 40, 60, and 80 degrees, which correspond to distinctive ranges of moment characteristics. Finally, a successful attempt was made to tune a GEKO turbulence model to fit the experimental data. This allowed us to reduce the maximum relative error in comparison to the experiment in the full yaw angles range down to 12.7%, which is in line with the norm requirements.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference42 articles.

1. Four Die after Train Derails in China http://www.chinadaily.com.cn/china/2007-02/28/content_816203.htm

2. Storm Burglind Causes Havoc in Switzerland, Derails Train https://www.swissinfo.ch/eng/wind-up_switzerland-battered-by-hurricane-speed-winds/43795876

3. August 18th 2019 Train Derailment

4. Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

5. Interaction of railway vehicles with track in cross-winds

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3