A Review about the Modeling and Simulation of Electro-Quasistatic Fields in HVDC Cable Systems

Author:

Jörgens ChristophORCID,Clemens Markus

Abstract

In comparison to high-voltage alternating current (HVAC) cable systems, high-voltage direct current (HVDC) systems have several advantages, e.g., the transmitted power or long-distance transmission. The insulating materials feature a non-linear dependency on the electric field and the temperature. Applying a constant voltage, space charges accumulate in the insulation and yield a slowly time-varying electric field. As a complement to measurements, numerical simulations are used to obtain the electric field distribution inside the insulation. The simulation results can be used to design HVDC cable components such that possible failure can be avoided. This work is a review about the simulation of the time-varying electric field in HVDC cable components, using conductivity-based cable models. The effective mechanisms and descriptions of charge movement result in different conductivity models. The corresponding simulation results of the models are compared against measurements and analytic approximations. Different numerical techniques show variations of the accuracy and the computation time that are compared. Coupled electro-thermal field simulations are applied to consider the environment and its effect on the resulting electric field distribution. A special case of an electro-quasistatic field describes the drying process of soil, resulting from the temperature and electric field. The effect of electro-osmosis at HVDC ground electrodes is considered within this model.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference129 articles.

1. HVDC Cable Systems—Highlighting Extruded Technology

2. High Voltage Engineering

3. Extruded Cables for High Voltage Direct Current Transmission–Advances in Research and Development;Mazzanti,2013

4. Review on HVDC cable terminations

5. Review of high voltage direct current cables

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3