Classification of Transmission Line Corridor Tree Species Based on Drone Data and Machine Learning

Author:

Li XiutingORCID,Wang Ruirui,Chen Xingwang,Li Yiran,Duan Yunshan

Abstract

Tree growth in power line corridors poses a threat to power lines and requires regular inspections. In order to achieve sustainable and intelligent management of transmission line corridor forests, a transmission line corridor tree barrier management system is needed, and tree species classification is an important part of this. In order to accurately identify tree species in transmission line corridors, this study combines airborne LiDAR (light detection and ranging) point-cloud data and synchronously acquired high-resolution aerial image data to classify tree species. First, individual-tree segmentation and feature extraction are performed. Then, the random forest (RF) algorithm is used to sort and filter the feature importance. Finally, two non-parametric classification algorithms, RF and support vector machine (SVM), are selected, and 12 classification schemes are designed to perform tree species classification and accuracy evaluation research. The results show that after using RF for feature filtering, the classification results are better than those without feature filtering, and the overall accuracy can be improved by 3.655% on average. The highest classification accuracy is achieved when using SVM after combining a digital orthorectification map (DOM) and LiDAR for feature filtering, with an overall accuracy of 85.16% and a kappa coefficient of 0.79.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference32 articles.

1. Research on Feature Extraction Method of Power Line Corridor Based on Multiple Remote Sensing Data;Chao,2010

2. Transmission line corridor scene classification based on high-resolution remote sensing images;Hao;J. Wuhan Univ.,2014

3. Refined identification of typical tropical plantation tree species based on multi-features of optical and radar images;Chong;For. Sci.,2021

4. Research on Stand Type Identification Based on Airborne Hyperspectral and Lidar Data;Jiaqi,2021

5. Classification of single tree species based on nonparametric classification algorithm and multi-source remote sensing data;Yinghui;J. Nanjing For. Univ.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3