Stability of a Groucho-Style Bounding Run in the Sagittal Plane

Author:

Duperret Jeffrey1ORCID,Koditschek Daniel E.1ORCID

Affiliation:

1. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

This paper develops a three-degree-of-freedom sagittal-plane hybrid dynamical systems model of a Groucho-style bounding quadrupedal run. Simple within-stance controls using a modular architecture yield a closed-form expression for a family of hybrid limit cycles that represent bounding behavior over a range of user-selected fore-aft speeds as a function of the model’s kinematic and dynamical parameters. Controls acting on the hybrid transitions are structured so as to achieve a cascade composition of in-place bounding driving the fore-aft degree of freedom, thereby decoupling the linearized dynamics of an approximation to the stride map. Careful selection of the feedback channels used to implement these controls affords infinitesimal deadbeat stability, which is relatively robust against parameter mismatch. Experiments with a physical quadruped reasonably closely match the bounding behavior predicted by the hybrid limit cycle and its stable linearized approximation.

Funder

National Science Foundation Graduate Research Fellowship

Army Research Office

Vannevar Bush Fellowship

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference72 articles.

1. High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah;Hyun;Int. J. Robot. Res.,2014

2. High-speed bounding with the MIT Cheetah 2: Control design and experiments;Park;Int. J. Robot. Res.,2017

3. Boston Dynamics (2023, July 24). Available online: http://www.bostondynamics.com.

4. Ghost Robotics (2023, July 24). Available online: https://www.ghostrobotics.io.

5. Jumping over obstacles with MIT Cheetah 2;Park;Robot. Auton. Syst.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3