Performance Evaluation of a Sensor Concept for Solving the Direct Kinematics Problem of General Planar 3-RPR Parallel Mechanisms by Using Solely the Linear Actuators’ Orientations

Author:

Schulz StefanORCID

Abstract

In this paper, we experimentally evaluate the performance of a sensor concept for solving the direct kinematics problem of a general planar 3-RPR parallel mechanism by using solely the linear actuators’ orientations. At first, we review classical methods for solving the direct kinematics problem of parallel mechanisms and discuss their disadvantages on the example of the general planar 3-RPR parallel mechanism, a planar parallel robot with two translational and one rotational degrees of freedom, where P denotes active prismatic joints and R denotes passive revolute joints. In order to avoid these disadvantages, we present a sensor concept together with an analytical formulation for solving the direct kinematics problem of a general planar 3-RPR parallel mechanism where the number of possible assembly modes can be significantly reduced when the linear actuators’ orientations are used instead of their lengths. By measuring the orientations of the linear actuators, provided, for example, by inertial measurement units, only two assembly modes exist. Finally, we investigate the accuracy of our direct kinematics solution under static as well as dynamic conditions by performing experiments on a specially designed prototype. We also investigate the solution formulation’s amplification of measurement noise on the calculated pose and show that the Cramér-Rao lower bound can be used to estimate the lower bound of the expected variances for a specific pose based exclusively on the variances of the linear actuators’ orientations.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3