Sim-to-Real Quadrotor Landing via Sequential Deep Q-Networks and Domain Randomization

Author:

Polvara RiccardoORCID,Patacchiola MassimilianoORCID,Hanheide MarcORCID,Neumann Gerhard

Abstract

The autonomous landing of an Unmanned Aerial Vehicle (UAV) on a marker is one of the most challenging problems in robotics. Many solutions have been proposed, with the best results achieved via customized geometric features and external sensors. This paper discusses for the first time the use of deep reinforcement learning as an end-to-end learning paradigm to find a policy for UAVs autonomous landing. Our method is based on a divide-and-conquer paradigm that splits a task into sequential sub-tasks, each one assigned to a Deep Q-Network (DQN), hence the name Sequential Deep Q-Network (SDQN). Each DQN in an SDQN is activated by an internal trigger, and it represents a component of a high-level control policy, which can navigate the UAV towards the marker. Different technical solutions have been implemented, for example combining vanilla and double DQNs, and the introduction of a partitioned buffer replay to address the problem of sample efficiency. One of the main contributions of this work consists in showing how an SDQN trained in a simulator via domain randomization, can effectively generalize to real-world scenarios of increasing complexity. The performance of SDQNs is comparable with a state-of-the-art algorithm and human pilots while being quantitatively better in noisy conditions.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3