I Let Go Now! Towards a Voice-User Interface for Handovers between Robots and Users with Full and Impaired Sight

Author:

Langer DorotheaORCID,Legler Franziska,Kotsch Philipp,Dettmann AndréORCID,Bullinger Angelika C.

Abstract

Handing over objects is a collaborative task that requires participants to synchronize their actions in terms of space and time, as well as their adherence to social standards. If one participant is a social robot and the other a visually impaired human, actions should favorably be coordinated by voice. User requirements for such a Voice-User Interface (VUI), as well as its required structure and content, are unknown so far. In our study, we applied the user-centered design process to develop a VUI for visually impaired humans and humans with full sight. Iterative development was conducted with interviews, workshops, and user tests to derive VUI requirements, dialog structure, and content. A final VUI prototype was evaluated in a standardized experiment with 60 subjects who were visually impaired or fully sighted. Results show that the VUI enabled all subjects to successfully receive objects with an error rate of only 1.8%. Likeability and accuracy were evaluated best, while habitability and speed of interaction were shown to need improvement. Qualitative feedback supported and detailed results, e.g., how to shorten some dialogs. To conclude, we recommend that inclusive VUI design for social robots should give precise information for handover processes and pay attention to social manners.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference38 articles.

1. Robotic Workmates: Hybrid Human-Robot-Teams in the Industry 4.0;Richert;Proceedings of the International Conference on E-Learning,2016

2. Design of a Robotic Workmate

3. Social Robotics

4. Using spatial and temporal contrast for fluent robot-human hand-overs;Cakmak;Proceedings of the 6th International Conference on Human-Robot Interaction,2011

5. An Affordance Sensitive System for Robot to Human Object Handover

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3