A Novel, Oriented to Graphs Model of Robot Arm Dynamics

Author:

Boiadjiev George,Krastev EvgeniyORCID,Chavdarov IvanORCID,Miteva Lyubomira

Abstract

Robotics is an interdisciplinary field and there exist several well-known approaches to represent the dynamics model of a robot arm. The robot arm is an open kinematic chain of links connected through rotational and translational joints. In the general case, it is very difficult to obtain explicit expressions for the forces and the torques in the equations where the driving torques of the actuators produce desired motion of the gripper. The robot arm control depends significantly on the accuracy of the dynamic model. In the existing literature, the complexity of the dynamic model is reduced by linearization techniques or techniques like machine learning for the identification of unmodelled dynamics. This paper proposes a novel approach for deriving the equations of motion and the actuator torques of a robot arm with an arbitrary number of joints. The proposed approach for obtaining the dynamic model in closed form employs graph theory and the orthogonality principle, a powerful concept that serves as a generalization for the law of conservation of energy. The application of this approach is demonstrated using a 3D-printed planar robot arm with three degrees of freedom. Computer experiments for this robot are executed to validate the dynamic characteristics of the mathematical model of motion obtained by the application of the proposed approach. The results from the experiments are visualized and discussed in detail.

Funder

Fund for Scientific Research at Sofia University “St. Kliment Ohridski”

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference30 articles.

1. Kinematic-Model-Free Orientation Control for Robot Manipulation Using Locally Weighted Dual Quaternions

2. Modern Robotics. Mechanics, Planning and Control;Park,2017

3. Time sub-optimal path planning for hyper redundant manipulators amidst narrow passages in 3D workspaces;Xidias,2014

4. Kinematic Synthesis of Structures for Metamorphic Serial Manipulators

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3