Development of an Automatic Robotic Procedure for Machining of Skull Prosthesis

Author:

Castelli KevinORCID,Carnevale MarcoORCID,Giberti HermesORCID

Abstract

The project presented in this paper develops within the field of automation in the medical-surgical sector. It aims at automating the process for the realization of prosthetic devices for the skull in cranioplasty, following a craniotomy intervention for brain tumor removal. The paper puts emphasis on the possibility to create the prosthetic device in run-time during the surgery, in order to ease the work that surgeons have to do during the operation. Generally, a skull prosthesis is realized before the day of the intervention, based on the plan of the medical operation, on the results of computed tomography, and through image processing software. However, after the surgery is performed, a non-negligible geometrical uncertainty can be found between the part of the skull actually removed and the cut planned during the preliminary analysis, so that the realized prosthesis (or even the skull, at worse) may need to be retouched. This paper demonstrates the possibility to introduce a fully automated process in a hospital environment, to manufacture in runtime the prosthetic operculum, relying on the actual geometry of the incision of the skull detected during the intervention. By processing a 3D scan of the skull after the craniectomy, a digital model of the prosthesis can be created and then used as an input to generate the code to be run by a robotic system in charge of the workpiece machining. Focusing on this second step, i.e., the manufacturing process, the work describes the way the dimensions of the raw material block are automatically selected, and the way robot trajectories for milling operation are automatically generated. Experimental validation demonstrates the possibility to complete the prosthesis within the surgery time, thus increasing the accuracy of the produced prosthesis and consequently reducing the time needed to complete the operation.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference25 articles.

1. Special issue on ‘transdisciplinary approaches to digital manufacturing for industry 4.0’

2. Addressing Unmet Clinical Needs with 3D Printing Technologies

3. Personalized development of human organs using 3D printing technology

4. Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine;Dobrzański;Arch. Mater. Sci. Eng.,2014

5. Computer Aided Design of Large-Format Prefabricated Cranial Plates

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3