Magnetic Circuit Design and Experiment of Novel Lorentz Magnetic Bearing with Double Air Gap

Author:

Cao Shinan,Niu Pingjuan,Wang Wei,Liu Qiang,Li Jing,Sheng Sha

Abstract

A uniform magnetic density distribution in the air gap is key for the Lorentz magnetic bearing to achieve high precision control and large torque output. To overcome the small magnetic field strength in an explicit magnetic bearing and a high magnetic density fluctuation rate in an implicit Lorentz magnetic bearing, a second air gap design method is proposed based on the maximum magnetic density distribution in the winding area. A novel Lorentz bearing with a double second air gap is designed. The maximum magnetic field strength in the winding area is calculated by the finite element method, and the structure of the double second air gap is designed. To reduce the calculation error of the magnetic field strength, the division of the reluctance by the magnetic induction line is proposed. The reluctance calculation formula is given. Based on Ohm’s law, the calculation of the magnetic field strength is obtained. Finally, a prototype of the novel Lorentz magnetic bearing is made. The magnetic field strength in the winding area and the magnetic density fluctuation rate are measured with a magnetic density measurement instrument. The maximum magnetic flux density in the winding area is 0.631 T, and the magnetic field strength is 0.58%. Less difference is found between the measurement result and the finite element result.

Funder

Award Cultivation Foundation from Beijing Institute of Petrochemical Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3