In Silico Prediction of Anti-Infective and Cell-Penetrating Peptides from Thalassophryne nattereri Natterin Toxins

Author:

De Cena Gabrielle Lupeti,Scavassa Bruna Vitória,Conceição Katia

Abstract

The therapeutic potential of venom-derived peptides, such as bioactive peptides (BAPs), is determined by specificity, stability, and pharmacokinetics properties. BAPs, including anti-infective or antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs), share several physicochemical characteristics and are potential alternatives to antibiotic-based therapies and drug delivery systems, respectively. This study used in silico methods to predict AMPs and CPPs derived from natterins from the venomous fish Thalassophryne nattereri. Fifty-seven BAPs (19 AMPs, 8 CPPs, and 30 AMPs/CPPs) were identified using the web servers CAMP, AMPA, AmpGram, C2Pred, and CellPPD. The physicochemical properties were analyzed using ProtParam, PepCalc, and DispHred tools. The membrane-binding potential and cellular location of each peptide were analyzed using the Boman index by APD3, and TMHMM web servers. All CPPs and two AMPs showed high membrane-binding potential. Fifty-four peptides were located in the plasma membrane. Peptide immunogenicity, toxicity, allergenicity, and ADMET parameters were evaluated using several web servers. Sixteen antiviral peptides and 37 anticancer peptides were predicted using the web servers Meta-iAVP and ACPred. Secondary structures and helical wheel projections were predicted using the PEP-FOLD3 and Heliquest web servers. Fifteen peptides are potential lead compounds and were selected to be further synthesized and tested experimentally in vitro to validate the in silico screening. The use of computer-aided design for predicting peptide structure and activity is fast and cost-effective and facilitates the design of potent therapeutic peptides. The results demonstrate that toxins form a natural biotechnological platform in drug discovery, and the presence of CPP and AMP sequences in toxin families opens new possibilities in toxin biochemistry research.

Funder

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3