Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition of synovial joints that causes disability and systemic complications. Ang-(1-7), one of the main peptides in the renin-angiotensin (Ang) system (RAS), imposes its protective effects through Mas receptor (MasR) signaling. It has a short half-life, limiting its feasibility as a therapeutic agent. In this study, we evaluated the anti-inflammatory effects of Ang-(1-7)’s novel and stable conjugate (Ang. Conj.) by utilizing its affinity for bone through bisphosphonate (BP) moiety in an adjuvant-induced arthritis (AIA) rat model. The rats received subcutaneous injections of vehicle, plain Ang-(1-7), or an equivalent dose of Ang. Conj. The rats’ body weights, paws, and joints’ diameters were measured thrice weekly. After 14 days, the rats were euthanized, and the blood and tissue samples were harvested for further analysis of nitric oxide (NO) and RAS components’ gene and protein expression. The administration of Ang. Conj. reduced body weight loss, joint edema, and serum NO. Moreover, the Ang. Conj. treatment significantly reduced the classical arm components at peptide, enzyme, and receptor levels while augmenting them for the protective arm. The results of this study introduce a novel class of bone-targeting natural peptides for RA caused by an inflammation-induced imbalance in the activated RAS. Our results indicate that extending the half-life of Ang-(1-7) augments the RAS protective arm and exerts enhanced therapeutic effects in the AIA model in rats.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献